Math 3093
Review.

- A function f defined on $[-\pi, \pi]$ with $f(\pi)=f(-\pi)$ can be extended to a 2π-periodic function on \mathbb{R}. It is said to be a function on the circle.
- (Uniqueness chm) Let f be an integrable function on

$$
\hat{f}(n)=0 \text { for all } n \in \mathbb{Z} \text {. }
$$

Then $f\left(x_{0}\right)=0$ if f is cts at x_{0}.

- (A convergence Tho)

Assume that f is continuous on the circle, and that

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)|<\infty .
$$

Then $\quad S_{N} f(x) \rightrightarrows f(x)$ on the circle as $N \rightarrow+\infty$.

Next we give a sufficient condition on f such that

$$
\sum_{-\infty}^{\infty}|\hat{f}(n)|<\infty .
$$

The 1. Let f be a twice cts differentiable on the circle. Then

$$
\sum_{-\infty}^{\infty}|\hat{f}(n)|<\infty
$$

To prove the above result, we first give a Lemma.
Lem 2. (1) If f is integrable on $[-\pi, \pi]$, then

$$
|\hat{f}(n)| \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f| d x, \forall n \in \mathbb{R} .
$$

(2) If f is C^{1} on the circle, then

$$
\hat{f}^{\prime}(n)=\operatorname{in} \hat{f}(n), \quad n \in \mathbb{Z}
$$

Pf. (1) is clear. To see (ii), for $n \in \mathbb{Z}$,

$$
\begin{aligned}
\int_{-\pi}^{\pi} f^{\prime}(x) e^{-i n x} d x & =\left.f(x) e^{-i n x}\right|_{-\pi} ^{\pi}-\int_{-\pi}^{\pi}\left(\operatorname{in} f(x) e^{-i n x} d x\right. \\
& =0+(i n) \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
\end{aligned}
$$

Hence $\quad \hat{f}^{\prime}(n)=$ in $\hat{f}(n)$.

Pf of Thu 2. Since f is C^{2} on the circle,

$$
\widehat{f}^{\prime \prime}(n)=(i n) \quad \hat{f}^{\prime}(n)=(i n)^{2} \hat{f}(n), \quad n \in \mathbb{Z}
$$

So for $n \neq 0$

$$
\hat{f}(n)=-\frac{\hat{f^{\prime \prime}}(n)}{n^{2}}
$$

Notice that $f^{\prime \prime}$ is continuous on the circle, so $\exists M>0$ s.t $\left|\hat{f^{\prime \prime}(n)}\right| \leqslant M$ for all $n \in \mathbb{Z}$.

It follows that

$$
\hat{f}(n)=0\left(\frac{1}{n^{2}}\right), \quad n \in \mathbb{Z} \backslash\{0\} .
$$

Thus $\quad \sum_{-\infty}^{\infty}|\hat{f}(n)|<\infty$.
2.4. Convolutions.

Let f, g be two integrable functions on the circle.
Define their convolution $f^{*} g$ on $[-\pi, \pi]$ by

$$
f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) g(y) d y
$$

- For given $x, f(x-y) g(y)$ is integrable (in y) on the circle.

$$
\begin{aligned}
S_{N} f(x) & =\sum_{n=-N}^{N} \hat{f}(n) e^{i n x} \\
& =\sum_{n=-N}^{N} \frac{1}{2 \pi}\left(\int_{-\pi}^{\pi} f(y) e^{-i n y} d y\right) \cdot e^{i n x} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{n=-N}^{N} e^{i n(x-y)}\right) f(y) d y \\
& =D_{N} * f(x)
\end{aligned}
$$

where $D_{N}(x)=\sum_{n=-N}^{N} e^{i n x}$ which is called the N-th Dirichlet kernel.

Remark: This is a motivation to study convolutions of functions.

A direct calculation show that

- $D_{N}(x)=\left\{\begin{array}{cl}\frac{\sin \left(N+\frac{1}{2}\right) x}{\sin \left(\frac{1}{2} x\right)} & \text { if } x \neq 0 \\ 2 N+1 & \text { if } x=0 .\end{array}\right.$

Below we give some basic properties of convolutions.
Prop.4. Suppose that f, g, h are integrable on the circle.
Then
(1) $\quad f *(g+h)=f * g+f * h$
(2) $(c f) * g=c(f * g)=f *(c g)$ for any $c \in \mathbb{C}$
(3) $f * g=g * f$.
(4) $(f * g) * h=f *(g * h)$
(5) $\quad f * g$ is cts
(6) $\widehat{f}_{*}(n)=\hat{f}(n) \hat{g}(n)$.

Pf: We only prove (3), (5) and (6), and leave the others to you as an exercise.
(3) $f * g=g * f$

Recall that for a fixed x,

$$
f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g(x-y) d y
$$

$$
\begin{aligned}
& \text { Letting } z=x-y \\
& =\frac{1}{2 \pi} \int_{x+\pi}^{x-\pi} f(x-z) g(z)(-1) d z \\
& =\frac{1}{2 \pi} \int_{x-\pi}^{x+\pi} f(x-z) g(z) d z \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-z) g(z) d z \quad \text { since } f(x-z) g(z) \text { is } 2 \pi-\text {-periodic } \\
& =g_{*} * f(x) .
\end{aligned}
$$

(6)

$$
\hat{f} * g(n)=\hat{f}(n) \hat{g}(n)
$$

Notice that

$$
\widehat{f_{*} g(n)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f_{*} g(x) e^{-i n x} d x
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g(x-y) d y\right) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i n y} \cdot g(x-y) e^{-i n(x-y)} \\
& d y d x
\end{aligned}
$$

(Fubini the: Let $F(x, y)$ be a Riemann integrable function on $[a, b] \times[c, d]$, Then

$$
\begin{aligned}
& \int_{a}^{b} \int_{c}^{d} F(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} F(x, y) d x d y \\
&=\iint_{[a, b] x[c, d]} F(x, y) d x d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { (by Fubini) } \frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \underbrace{\int_{-\pi}^{\pi} g(x-y) e^{-i n(x-y)} d x} f(y) e^{-i n y} d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{g}(n) f(y) e^{-i n y} d y \\
& =\hat{g}(n) \hat{f}(n) .
\end{aligned}
$$

(5) $f * g$ is cts on the circle.

We first prove the result in the case when g is cts on the circle.

Notice that g is uniformly cts on the circle Hence $\forall \varepsilon>0, \exists \delta>0$ such that

$$
\left|g\left(y_{1}\right)-g\left(y_{2}\right)\right|<\varepsilon \text { if }\left|y_{1}-y_{2}\right|<\delta .
$$

Now for x_{1}, x_{2} on the circle with $\left|x_{1}-x_{2}\right|<\delta$,

$$
\begin{aligned}
f * g\left(x_{1}\right)- & f * g\left(x_{2}\right) \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g\left(x_{1}-y\right) d y \\
& -\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g\left(x_{2}-y\right) d y \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) \cdot\left(g\left(x_{1}-y\right)-g\left(x_{2}-y\right)\right) d y
\end{aligned}
$$

Hence

$$
\begin{aligned}
&\left|f * g\left(x_{1}\right)-f * g\left(x_{2}\right)\right| \\
& \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)| \cdot\left|g\left(x_{1}-y\right)-g\left(x_{2}-y\right)\right| d y \\
& \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)| \cdot \varepsilon d y \\
&=\varepsilon \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)| d y
\end{aligned}
$$

$\leqslant \varepsilon \cdot B$, where $B=\sup _{y \in[-\pi, \pi]}|f(y)|$.
Hence $f_{*} g$ is uniformly cts on the circle.

Next we consider the general case when g is merely integrable on the circle.

We need an auxiliary result .
Lem 2: Let g be integrable on $[-\pi, \pi]$. Then for any $\varepsilon>0, \exists$ a cts function h
on the circle such that

$$
|h(x)| \leqslant \sup _{y \in[-\pi, \pi]}|g(y)|, \quad \forall x \in[-\pi, \pi]
$$

and

$$
\int_{-\pi}^{\pi}|g(x)-h(x)| d x<\varepsilon
$$

We postpone the proof of the above lemma a while.

Now we use it to prove the continuity of $f * g$.

By Lemma 2, we can take a sequence of cts functions $\left(h_{n}\right)$ on the circle such that

$$
\int_{-\pi}^{\pi}\left|g(x)-h_{n}^{(x)}\right| d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Now let us estimate

$$
\begin{aligned}
& f * g(x)-f * h_{n}(x) \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g(x-y) d y-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) \cdot h_{n}(x-y) \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) \cdot\left(g(x-y)-h_{n}(x-y)\right) d y .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left|f_{*} g(x)-f_{*} \ln _{n}(x)\right| \\
& \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)| \cdot\left|g(x-y)-h_{n}(x-y)\right| d y \\
& \leqslant \frac{B}{2 \pi} \int_{-\pi}^{\pi}\left|g(x-y)-\ln _{n}(x-y)\right| d y
\end{aligned}
$$

(where $B:=\sup _{y \in[-\pi, \pi]}|f(y)|$)

$$
=\frac{B}{2 \pi} \int_{-\pi}^{\pi}\left|g(y)-h_{n}(y)\right| d y
$$

It implies that
$f * h_{n}^{(x)} \rightrightarrows f * g(x)$ on the circle as $n \rightarrow \infty$.

Since $f_{*} h_{n}$ is cts on the circle, it follows that $f_{*} g$ is cts on the circle.

